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We consider toy cosmological models in which a classical, homogeneous, spinor �eld provides
a dominant or sub-dominant contribution to the energy-momentum tensor of a at Friedmann-
Robertson-Walker universe. We �nd that, if such a �eld were to exist, appropriate choices of the
spinor self-interaction would generate a rich variety of behaviors, quite di�erent from their widely
studied scalar �eld counterparts. We �rst discuss solutions that incorporate a stage of cosmic
ination and estimate the primordial spectrum of density perturbations seeded during such a stage.
Ination driven by a spinor �eld turns out to be unappealing as it leads to a blue spectrum of
perturbations and requires considerable �ne-tuning of parameters. We next �nd that, for simple,
quartic spinor self-interactions, non-singular cyclic cosmologies exist with reasonable parameter
choices. These solutions might eventually be incorporated into a successful past- and future-eternal
cosmological model free of singularities. In an Appendix, we discuss the classical treatment of
spinors and argue that certain quantum systems might be approximated in terms of such �elds.

PACS numbers: 98.80.-k; 98.80.Cq; 98.80.Jk;

I. INTRODUCTION

At least since the advent of the �rst inationary mod-
els [1], cosmologies containing classical scalar �elds have
received widespread attention in the literature. From a
purely phenomenological point of view, such scalar �elds
are general enough to accommodate a rich variety of be-
haviors. From a theoretical point of view, their invariable
appearance in various theories of nature makes them nat-
ural candidates for cosmological applications. In spite of
these facts, one might wonder to what extent scalar �elds
are singled out by the former considerations. Could other
classical homogeneous �elds play a signi�cant role in cos-
mology?

In the present paper, we consider the possibility that
classical, homogeneous, spinor �elds might play a role
in cosmology. By a classical spinor �eld, we simply
mean a set of four complex-valued spacetime functions
that transform according to the spinor representation
of the Lorentz group. Although the existence of spin-
1=2 fermions is both theoretically and experimentally
undisputed, these are described by quantum spinor �elds.
It is unclear when fermionic quantum �elds might be
consistently treated as classical spinors. It is generally
held that there exists no classical limit for fundamental
quantum Fermi �elds; however, one can imagine clas-
sical spinors as arising from an e�ective description of
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a more complex quantum system. We address possible
justi�cations for the existence of classical spinors in an
Appendix. For the bulk of this paper, we will simply
presuppose their existence.
We �nd that classical spinors are mathematically per-

fectly consistent. Physically, one might object that
spinors violate Lorentz invariance and isotropy. With-
out being explicit about the precise nature of Lorentz
transformations in a general gravitational background,
let us point out that Lorentz invariance is broken in
any Friedmann-Robertson-Walker cosmology, regardless
of whether a spinor has a non-vanishing expectation value
or not. On the other hand, we shall see that eventual vi-
olations of isotropy caused by the spinor do not prevent
consistent solutions of Einstein's equations, and might
actually remain undetectable.
Compared to scalar �elds, spinor �elds have attracted

little attention in cosmology. One of the �rst papers
about the subject was Taub's study of the Dirac equa-
tion in various cosmological spaces [2]. Brill and Wheeler
dealt with neutrinos in gravitational �elds [3]. The quan-
tization of a spinor �eld in an expanding universe was
considered by Parker [4], and the quantization of grav-
ity coupled to a spinor was addressed in [5, 6]. Explicit
solutions of the Dirac equation in an open Friedmann-
Robertson-Walker spacetime have been considered in [7].
Solutions of the Einstein equations coupled to a spinor
in Bianchi Type I spaces have been extensively studied
by Saha and Shikin [8].
The structure of this paper is the following. In Sec-

tion II we discuss how to couple a spinor to gravity. The
reader familiar with the formalism might want to skip
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to the next section and eventually refer back for nota-
tional details. Section III deals with the basic cosmo-
logical equations and general solutions in terms of an
arbitrary spinor self-interaction term. In Section IV we
study ination driven by a spinor �eld and compute the
spectrum of primordial density perturbations. Section
Section V presents a cyclic, non-singular model of the
universe that critically relies on the properties of a spinor
�eld. Finally, in Section VI we summarize our results and
draw our conclusions. The Appendix comments on the
meaning and properties of classical spinors.

II. FORMALISM

In this section we briey review how a spinor �eld
is coupled to gravity. For complete discussions about
spinors in curved spacetimes, see [9, 10, 11].
Because the group of di�eomorphisms does not ad-

mit spinor representations, in order to couple a spinor
to gravitation one introduces the Lorentz group (which
does actually have spinor representations) as a local
symmetry group of the theory. Under di�eomorphisms
x� ! ~x�(x�), a spinor  is a scalar,  ! ~ =  , but
under a local Lorentz transformation with parameters
�ab(x) a spinor transforms according to

 ! ~ = exp

�
1

2
�ab(x)�

ab

�
 ; (1)

where �ab � 1
4 [

a; b] are the generators of the spinor
representation of the Lorentz group, and the 4 � 4 ma-
trices a satisfy the Cli�ord algebra fa; bg = 2�ab. We
shall choose the Dirac-Pauli representation

0 =

�
1 0
0 �1

�
i =

�
0 �i

��i 0

�
; (2)

where the �i are the conventional 2 � 2 Pauli matri-
ces. Then, 0 = (0)y is Hermitean, and the i =
�(i)y are anti-Hermitean. For later convenience, we
shall de�ne the additional (Hermitean) gamma matrix
5 � i0123.
A fermion is coupled to gravitation with the aid of a

\vierbein" e�a, a set of four contravariant vector �elds
that satisfy the orthonormality condition

g��e
�
ae
�
b = �ab ; (3)

where g�� is the spacetime metric and �ab is the
Minkowski metric �ab = diag(1;�1;�1;�1). Latin in-
dices enumerate each of the vectors in the vierbein while
Greek indices enumerate the spacetime components of
each of these vectors. Spacetime and Lorentz indices are
raised and lowered with the spacetime and Minkowski
metrics respectively, leading to associated sets of vectors
such as ea� and e�

a.
Local Lorentz transformations �(x) are just local

\reshu�ings" of the vierbein vectors

e�a ! ~e�a = �a
be�b; (4)

that preserve the orthonormality relation (3) at each
point. Thus, the spacetime metric only determines the
vierbein up to such local Lorentz transformations. For
this reason, one must ensure that any Lagrangian formed
with the aid of the vierbein is invariant under the Lorentz
group acting as a local symmetry. Invariant terms con-
taining derivatives of a spinor can be constructed through
the covariant derivative

D� = (@� +
�) ; (5)

which transforms as a (covariant) vector under di�eomor-
phisms and as a spinor under local Lorentz transforma-
tions. The 4� 4 matrix 
� is the spin connection


� =
1

2
!�ab�

ab; !�ab = e�ar�e�b : (6)

The coeÆcients !�ab are the Ricci rotation (or spin) co-
eÆcients.
The vierbein and the at-space gammamatrices allow

one to de�ne a new set of gamma matrices

�� � e�a
a (7)

that satisfy1 the algebra f��;��g = 2g��. These can be
used to write down a generalization of the Dirac action
in a curved spacetime background,

S =

Z
d4x e

�
i

2

�
� ��D� �D� � �

� 
� � V

�
; (8)

which we have written in a symmetrized form. Here, e
is the determinant of the vierbein e�

a, and the Dirac ad-
joint � is given by  y0. The covariant derivative acting
on the adjoint is D� � = @� � � � 
�. By an integration
by parts, the kinetic term of the spinor can be cast in the
\conventional" form i � ��D� . The term V stands for
any scalar function of  , � and possibly additional mat-
ter �elds. When a particular form of V is later needed,
we will assume that V only depends on the scalar bilinear
�  . It turns out that this choice is general enough for
our purposes. More general interactions in Bianchi Type
I spacetimes have been considered in the series of papers
[8].
The Lagrangian (8) describes how the spinor is cou-

pled to gravity, but it does not specify the dynamics of
gravity. We shall assume that the latter is governed by
the Einstein-Hilbert action. Hence, we consider a spinor
minimally coupled to general relativity,

S = S + Sm � 1

6

Z
d4x

p�gR; (9)

where R is the scalar curvature, S is given by Eq. (8)
and Sm describes additional matter �elds, such as scalar

1 Note that, while the a's do not transform under local Lorentz
transformations or di�eomorphisms, the ��'s do. They inherit
their transformation properties from the vierbein.
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�elds or gauge �elds. The symmetries we have postulated
up to now, di�eomorphism and local Lorentz invariance,
certainly allow for the presence of additional terms in
the action. For example, we could have written down a
non-minimal term like �  R. However, as we are going
to see, in an expanding universe �  decays at least as
fast as 1=a3. Therefore, during cosmic expansion such a
term would quickly become negligible. This situation is
in sharp contrast with the case of a scalar �eld �, where
a priori there is no reason to expect a term proportional
to �R to be negligible (see however [12, 13]). Eventually
this fact could be relevant in models where a spinor �eld
drives late time cosmic acceleration.
Varying the action (9) with respect to the vierbein e�a

leads to the Einstein equations

G�� = 3T�� ; (10)

where the energy momentum tensor T�� is given by the
variation of the matter action,

T�� =
e�a
e

ÆS

Æe�a
: (11)

Note that we work in units where 8�G=3 = �h = c = 1.
Substituting the action (8) into Eq. (11) we obtain, after
an integration by parts, the energy momentum tensor of
the spinor (on-shell),

( )T�� =
i

2

�
� �(�D�) �D(�

� ��) 
� � g��L : (12)

We have used a relation that follows from the Lorentz
invariance of the spinor Lagrangian,

D�( � f��;���g ) =
= � ��D� � � ��D� � (D� � )�� + (D� � )�� ;

(13)

to rewrite the result of the spinor variation. On the other
hand, varying the action with respect to the �eld � yields
the equation of motion of the spinor, a generalization of
the Dirac equation to a curved spacetime,

i��D� � @V

@ � 
= 0 : (14)

If the action is real, the variation of the action with re-
spect to  yields the adjoint of the previous equation.

III. COSMOLOGICAL SOLUTIONS

Because we are interested in cosmology, in this pa-
per we deal with homogeneous and isotropic FRW space-
times. Current observations favor a at universe [14], so
we assume the spacetime metric to be spatially at,

ds2 = dt2 � a2(t) d~x2: (15)

For these isotropic solutions of the Einstein equations
to exist, the energy-momentum tensor of the spinor must
be compatible with the symmetries of the metric (15),
homogeneity and isotropy. At this point, note that ho-
mogeneity of a spinor is not a gauge-invariant concept;
by a local Lorentz transformation (1), it is always pos-
sible to transform a homogeneous (space-independent)
spinor  (t) into an inhomogeneous (space-dependent)

one ~ (t; ~x). We are going to look for spinor solutions
of the Dirac equation that can be written as a gauge-
transformed homogeneous spinor. If that is the case,
there exists a vierbein where the Dirac equation allows
space-independent solutions. In our case such a vierbein
is given by2

e�0 = Æ�0 ; e�i =
1

a
Æ�i: (16)

In the gauge (16) the equation of motion of a space-
independent spinor (14) reads

_ +
3

2
H + i0V 0 = 0; (17)

where a dot (_) denotes a time derivative, a prime ( 0 )
denotes a derivative with respect to �  , and H =
d(loga)=dt is the Hubble parameter. The equation man-
ifestly admits space-independent solutions, and hence,
spinor observables like the energy momentum tensor are
also homogeneous.
One should also verify whether spinors are compatible

with the isotropy of the FRW metric. The 0
i Einstein

Eqs. 0 � G0
i = T0

i are satis�ed only if T0i vanishes.
This is possible for conventional matter forms (perfect
uids and homogeneous scalars), but it is not generally
true for a spinor. In fact, in spatially open or closed uni-
verses, it is not possible to satisfy the constraint T0i = 0
unless �  is zero [5, 6]. In a spatially at universe how-
ever, the equation of motion (17) automatically implies
the vanishing of T0i, so that the presence of the spinor is
consistent with the isotropy of the metric.
A convenient combination of the remaining Einstein

Eqs. (10), the 0
0 and the ij , involves the energy density

�k and the pressure pk of the di�erent constituents of the
universe,

H2 = � + �m (18)

�a = �1

2
[� + �m + 3(p + pm)]a: (19)

Here, the sub-index  stands for the spinor and m for
any additional matter, such as dust, radiation, or even
dark energy. The spinor's energy density and pressure

2 In open or closed FRW universes, one can construct a vierbein
that allows homogeneous spinor solutions. These are formed
from the Killing vectors of the homogeneous3-dimensional spaces
of Bianchi Type V and Type IX, respectively.
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are given by the corresponding components of the energy
momentum tensor (12),

� � ( )T0
0 = V (20)

p � � ( )Ti
i = V 0 �  � V: (21)

The equation of state of the spinor w is the ratio of its
pressure to energy density, and hence, it is given by

w � p 
� 

=
V 0 �  � V

V
: (22)

The equation of state is not restricted to be within the in-
terval �1 � w � 1. For a conventional massive fermion,
V = m �  , the equation of state agrees with that of a
uid of dust, w = 0. For more general choices of V , w 
may acquire any real value.
It is possible to directly integrate the spinor equation

of motion if V only depends on �  . It follows directly
from the Dirac equation (17) that

�  =
A

a3
; (23)

where A is a time-independent constant. Note that this
result is valid for any time dependence of the background
geometry, a(t), and thus, is valid regardless of the dom-
inant energy component of the universe. In an expand-
ing universe, the value of �  monotonically decreases,
whereas in a contracting universe the value of �  mono-
tonically increases. These facts do not imply however
that the energy density of the spinor follows the same
behavior. The Dirac equation can be cast as a continuity
equation

_� + 3H�(1 +w) = 0: (24)

Integrating Eq. (24) or directly from Eq. (23) it is pos-
sible to �nd � as a function of the scale factor a for
arbitrarily given V ( �  ),

� = V
��
�  =A=a3

: (25)

Conversely, given an arbitrary function � (a) one can
always �nd a V ( �  ) such that �(a) is a solution of the
equation of motion (24),

V ( �  ) = � 
��
a=(A= �  )1=3

: (26)

In conclusion, a spinor �eld can accommodate any de-
sired behavior of its energy density by an appropri-
ate choice of V . In that respect, a spinor �eld is
completely di�erent from a scalar �eld. A (canonical)
scalar �eld cannot violate the null3 energy condition [16],
whereas a spinor �eld can violate any desired|weak4,

3 �+ p � 0
4 �+ p � 0 and � � 0

null, strong5 or dominant6|one. Even non-canonical
scalar �elds|\k-�elds" [17]|cannot reproduce the be-
havior of a spinor. In the former there are barriers that
prevent a transition from �+p > 0 to �+p < 0, whereas
such barriers are nonexistent for spinors. The converse is
however true. A spinor can reproduce the behavior of a
scalar �eld. In particular, it can drive ination and late
time cosmic acceleration.
Although these solutions of Einstein equations sourced

by a spinor are perfectly valid and consistent, they might
break isotropy. By that we mean that the spatial compo-
nents of certain vector quantities that involve the spinor
do not necessarily vanish, and hence, are not invariant
under spatial rotations. For instance, it turns out that
for non-trivial homogeneous solutions of the Dirac Eq.
(17) the spatial components of the vector j� � � �� are
generically non-zero. If the action (9) does not include
a coupling between j� and any other observable vector
quantity, such a violation would be undetectable. On
the other hand, if the action contained such a coupling,
there still exist some spinors for which ji = 0, such as,
for instance,

 = ( 1; 0; 0; 0); (27)

Note that this form of the spinor is compatible with the
equation of motion (17). In other cases, no choice of
a spinor prevents isotropy violations. There is no non-
trivial spinor such that the \pseudo-vector" � 5� has
non-vanishing spatial components [5, 6]. But again, if
there is no coupling between the latter vector and any
other observable component (say, because of parity con-
servation), such a violation would remain undetectable.
Although in this section we have mainly assumed that

V only depends on the scalar bilinear �  , some of the re-
sults can be easily generalized for rather arbitrary choices
of V . Consider, for example, any V that is invariant un-
der the global transformation  ! ei� , for arbitrary
constant �. Such a symmetry means that the  a-
vor is conserved, and hence, there is a conserved current
r�( � �

� ) = 0. Then, for a homogeneous spinor

� 0 =
~A

a3
; (28)

which already suggests that Eq. (23) is not just a con-
sequence of our choice of V . In fact, writing down the
4-spinor in terms of two 2-spinors,  = (u; v), it follows
from the identity

( �  )2 + (i � 5 )
2 + ( � 05 )

2 =

( � 0 )2 � 4
�
(uyu)(vyv) � (uyv)(vyu)

�
(29)

and the Cauchy-Schwarz inequality that

( �  )2 + (i � 5 )
2 + ( � 05 )

2 �
~A2

a6
: (30)

5 �+ p � 0 and �+ 3p � 0
6 � � jpj
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Therefore, spinor bilinears generically decay during the
expansion of the universe, without regard to the precise
form of the spinor interaction. In particular, in an ex-
panding universe, there are no non-trivial solutions of
the spinor equations of motion with constant  .

IV. INFLATION

In this section, we investigate the possibility that a
classical spinor �eld could drive ination. A suÆciently
long stage of ination [1] explains many of the features
of our universe that remain unexplained otherwise (see
[18] for diverging claims). Nevertheless, the nature of
the component that was responsible for ination remains
unknown. Most inationary scenarios rely on a homoge-
neous scalar �eld rolling down an appropriate potential;
however, at present there is no direct experimental ev-
idence for the existence of fundamental scalar �elds in
nature. Hence, a natural question is whether a another
type of �eld could have driven a stage of ination in the
early universe. Ination driven by a vector �eld has been
considered by Ford [23], and ination driven by a spin-
ning uid has been discussed by Obukhov [20].

A. Background

By de�nition, ination is a stage of accelerated expan-
sion of the universe, �a > 0. It follows from Eq. (19)
that any component driving ination has an equation of
state that obeys w < �1=3. (We assume � to be posi-
tive.) Three types of ination are mainly considered in
the literature: pole-like ination with w < �1, de Sit-
ter ination with w = �1 and power-law ination with
�1 < w < �1=3. It is easy to verify from Eq. (22) that
ination (or simply expansion) with constant equation of
state w results from a \potential"

V = ( �  )1+w: (31)

If w < �1 the expansion runs into a future singularity,
while if w > �1 the expansion runs into a past singular-
ity. However, by an appropriate choice of V , the universe
could pole-like inate in the past and power-like inate
in the future.
If w = �1, the formula (31) implies that V is constant,

as for a cosmological term. It is possible to relax the con-
dition on the function V by looking for a stage of nearly
de Sitter ination, w � �1. In terms of the function V ,
the condition for nearly de Sitter ination is

���� d logVd log �  

����� 1: (32)

Note that the latter condition alone suÆces to guarantee
quasi de Sitter ination. This is to be compared with con-
ventional scalar-�eld driven ination, where two slow-roll
conditions are needed. In general, any V that asymptotes

to a positive constant at large �  satis�es Eq. (32). Ex-
amples of such functions V are log[1+( �  )n], tanhn � �  
and ( �  )n=(1 + �  )n for arbitrary positive n and suÆ-
ciently large �  .
Although nothing prevents a spinor �eld from driving

ination, certain facts make this possibility unappealing.
Ination solves the homogeneity problem if it lasts for
about 60 e-foldings. Let us assume that V is such that
w < �1=3 for �  > ( �  )e and w = �1=3 for �  =
( �  )e (Fig. 1). The end of ination is determined by
( �  )e, the point where the equation of state w crosses the
\critical" value �1=3. For instance, for V = ( �  )n=(1 +
�  )n ination ends once �  reaches 3n=2 � 1. If the
initial value of the scalar bilinear is ( �  )i, then ination
lasts a number of e-foldings N given by

N =
1

3
log

( �  )i
( �  )e

: (33)

It follows that during 60 e-foldings �  changes by eighty
orders of magnitude! This is to be compared with a con-
ventional chaotic model, where the scalar �eld changes by
just an order of magnitude. This fact is particularly im-
portant in nearly de Sitter ination, since the \atness"
condition (32) has to be satis�ed for a range of values of
�  that encompasses eighty orders of magnitude.
An important di�erence between ination driven by

a spinor and the conventional scenarios is the reheating
mechanism after the end of ination. In the conventional
scenarios, the universe is reheated when the scalar �eld
starts oscillating around the bottom of its potential and
decays into particles [1, 21, 22]. If ination is driven by
a spinor �eld, the quantity �  evolves according to Eq.
(23) and hence does not oscillate. Nevertheless, there are
several mechanisms to reheat the universe. One of them
is gravitational particle production at the end of ination
[23, 24]; more eÆcient ways have been suggested in [25].

B. Perturbations

One of the most appealing features of many of the
conventional inationary models is their prediction of an
adiabatic, nearly scale invariant spectrum of primordial
density perturbations, in agreement with current obser-
vations. Our goal in this section is to compute the power
spectrum of density perturbations generated during a
stage of nearly de Sitter ination driven by the spinor
�eld  . In a proper treatment of the problem, we would
perturb both metric and spinor and solve the linearized
Einstein equations. The nature of the spinor makes this
path cumbersome, so we shall rely on a simpli�ed anal-
ysis, where we only perturb the spinor in a given, �xed,
spacetime background (de Sitter spacetime).
We shall characterize density perturbations Æ� by the

variable

� � Æ�

� + p
: (34)
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(ψψ)

ψψ

−1/3

−1

e

V

w

Inflation

FIG. 1: A plot of a generic interaction that yields ination.
The corresponding equation of state is also shown in the dia-
gram. For large values of �  , the interaction is at, Eq. (32),
allowing nearly de Sitter ination . At the critical value ( �  )
the equation of states reaches �1=3 and ination ceases to be
possible.

This quantity is somewhat analogous to the Bardeen vari-
able, which is conserved on large scales in the absence of
entropy perturbations, and which can be directly related
to the cosmic microwave background temperature uc-
tuations. The source of the density perturbations Æ� are
the uctuations Æ of the spinor �eld around its homo-
geneous background value  0. We treat  0 as a classical
�eld, and the uctuations Æ as a quantum �eld in an
expanding universe [4],

Æ =
1

(2�)3=2

Z
d3k

X
�

h
u(t;~k; �)a(k; �)ei

~k~x +

+ v(t;~k; �)by(k; �)e�i
~k~x
i
: (35)

The index � runs over the two spin states of the
spinor, and the operators a and b are particle and an-

tiparticle annihilation operators, fa(~k; �); ay(~k0; �0)g =

fb(~k; �); by(~k0; �0)g = Æ(3)(~k � ~k0)Æ��0 .
The power spectrum P(k) is a measure of the uctu-

ations of the variable � on comoving scales of size 1=k,
and it is implicitly de�ned by the relation [26]

h�(t; ~x)�(t; ~x+ ~r)i =
Z

dk

k

sin kr

kr
P(k): (36)

Here, h i denotes the expectation value in an appropri-
ately chosen vacuum state, aj0i = bj0i = 0. Using ex-
pressions (20) and (21) for the energy density and pres-
sure of the spinor �eld respectively, we �nd that

� =
Æ �  + � Æ 

�  
; (37)

where we have dropped the subindex 0 that denotes back-
ground quantities. Substituting Eq. (37) into the left
hand side of Eq. (36) we obtain (for ~r = 0)

h�(t; ~x)�(t; ~x)i = 2hÆ � (t; ~x) (t) � � (t)Æ (t; ~x)i
( �  )2

; (38)

where we have used the fact than only terms with equal
number of creation/annihilation operators have a non-
vanishing expectation value.
Using the Pauli-Fierz identities [27] we can express the

previous four spinor expectation value in terms of pertur-
bation bilinears,

h� �i = hÆ � Æ i
2 �  

+
( � a )hÆ � aÆ i

2( �  )2
+ � � � : (39)

Note that the second term in the right hand side intro-
duces violations of isotropy in the power spectrum unless
� a vanishes7. Because we are only interested in an
estimate of the amplitude and the k dependence of the
spectrum, we can concentrate on the �rst term on the
right hand side. Substituting the expansion (35) into
that term we �nally obtain that the power spectrum is
of the order

P(k) � k3

4�2

X
�

�v(t;~k; �) v(t;~k; �)

( �  )
: (40)

The time evolution of v is dictated by the equation of
motion of Æ . The �eld Æ itself satis�es the linearized
Dirac equation i�0D0Æ + i�iDiÆ � mÆ = 0, where
we assume that m � V 0 is small but non-zero and V 00 is
negligible. It is convenient to work with the rescaled �eld,
~Æ = a3=2Æ instead of Æ . The rescaled �eld behaves as
a spinor with a time-dependent mass in at space, and
in particular, ~v satis�es

i0
d~v

d�
+ iki~v � am~v = 0; (41)

where � denotes conformal time, d� = dt=a. In de Sit-
ter space, � = �e�Ht=H runs from � 1 to 0, and
a = �1=(H�). Solutions of the Dirac equation (41) in
a de Sitter background were studied by Taub [2]. The
ansatz ~v = (v+V+; v�V�), where V+ and V� are two
time-independent two-component spinors, yields the sec-
ond order di�erential equation

v00� + [k2 + a2m2 � i(am)0]v� = 0: (42)

Di�erent linear combinations of the solutions to Eq. (42)
correspond to di�erent choices of vacuum state. We

7 The power spectrum is isotropic if the Fourier transform of the
correlation function on the lhs of Eq. (36) only depends on

k � j~kj , and not on ~k itself. For simplicity, we have implic-
itly assumed isotropy in our de�nition of the power spectrum P,
in the rhs of Eq. (36).
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choose the standard prescription where v� / eik� as
� ! �1 [10]. The corresponding properly normalized
spinor solutions are then

v(�;~k; ") =

r
��k�
a3

e��m=2H

2

0
@ H(2)

� (�k�)k3=k

H(2)
� (�k�)(k1+ik2)=k

e�m=HH
(2)
�� (�k�)
0

1
A ;

v(�;~k; #) =

r
��k�
a3

e��m=2H

2

0
@H(2)

� (�k�)(k1�ik2)=k

�H(2)
� (�k�)k3=k

0
e�m=HH

(2)
�� (�k�)

1
A :

(43)

The functions H
(1)
� and H

(2)
� are the Hankel functions of

the �rst kind and second kind [28], and � = 1
2 � im=H.

Up to the factor a�3=2, the previous spinors oscillate as
eik� for modes inside the horizon, �k� � 1. Using the
asymptotic expansion for the Hankel function in the limit
�k� � 1 (modes outside the horizon)

H(2)
� (�k�) � i

�
�(�)

��k�
2

���

; (44)

it is straightforward to verify that the power spectrum
\freezes" on large scales and becomes equal to

P(k) � � k3

2�3A
j�(�)j2 sinh �m

H
(for � k� � 1):

(45)
Such a power spectrum has spectral index n = 4, in
strong disagreement with experimental results consistent
with a scale invariant spectrum with n � 1 [14]. The
constant A is the quantity that appears in Eq. (23).
Equation (45) can also be used to estimate the power
spectrum of the density contrast,

PÆ�=� �
�
mA

V a3

�2

P: (46)

Because during ination V is nearly constant while a
grows exponentially, spinor uctuations are highly sup-
pressed with respect to, say, scalar �eld density uctua-
tions.
The k3 dependence of the power spectrum (45) and

the a3 decay of the density contrast are to some extent
an expression of the conformal triviality of the system.
Indeed, a massless spinor is conformally invariant, and
the power spectrum of a massless spinor in at space-
time displays the same k3 dependence. Our calculation
shows that even the inclusion of a conformal symmetry-
violating mass does not signi�cantly alter this result.
Note that although expression (45) vanishes for m = 0,
this merely reects the chiral asymmetry of the �rst term
in the expansion (39). In the limit of zero mass, the dis-
carded terms give the dominant contributions, which also
are proportional to k3.
In conclusion, at the level of our simpli�ed preliminary

analysis, it seems that a stage of (quasi) de Sitter ination
driven by a spinor cannot seed a scale invariant spectrum

of primordial density perturbations by itself. Eventually,
a light scalar �eld present during ination (as in curvaton
models [15]) may solve this problem.

V. NON-SINGULAR CYCLIC COSMOLOGIES

One of the most intriguing issues in cosmology is the
ultimate origin of the universe and the character of its
initial state. One of the attractions of cyclic cosmolo-
gies [29, 30, 31] is that|to the extent that they are truly
cyclic, returning to the same state after each cycle|they
dispense altogether with that problem. Since they are
past eternal, there is no need to formulate initial con-
ditions from which the universe is evolved into the fu-
ture. Furthermore, the universe has always existed for
the same reason, so that there is no need to ask where
it originated from. However, many of the cyclic universe
models that have been proposed so far su�er from sin-
gularities that prevent a continuous account of cosmic
history. At a certain time, the universe evolves into a
singular state where the conventional low-energy e�ective
theory description of the universe breaks down. Further-
more, even if the singularity is regulated in some way,
these models can still lead to inconsistencies [32].
In this section we describe a scenario which avoids this

latter breakdown (see [33] for alternatives). For simple
choices of the self-interaction term V ( �  ), cyclic cos-
mologies free of singularities exist. Here, we present a
simple model illustrating this point. Though we make no
claim that this simple model leads to an entirely satisfac-
tory cosmology, we see no obstacle to re�ning the basic
idea into a more realistic description of our universe.
Consider a spatially at universe that contains \mat-

ter" (dark energy, dust and radiation) and a homoge-
neous spinor �eld  , and suppose that the interaction
term V in Eq. (8) has the form given in Figure 2. The
\potential" is negative for \small" values of �  , and it
becomes negative and decreases \fast enough" for large
values of �  . Such an interaction might be given for
instance by

V ( �  ) = � +m �  � �( �  )2: (47)

Here � is a (negative) contribution to the total cosmo-
logical constant, m is a (positive) mass and � is a (posi-
tive) coupling constant. Hence, such a model describes a
conventional, self-interacting, massive spinor with a neg-
ative contribution to the vacuum energy.
In order to describe cosmic evolution in such a uni-

verse, let us arbitrarily start our description during ex-
pansion. Suppose that the matter energy density domi-
nates over the energy density of the spinor at a time when
the latter is positive (region II in Fig. 3.) In an expanding
universe �  / a�3 is driven to values where the energy
density of the spinor becomes negative, while the energy
densities of radiation (/ a�4) and dust (/ a�3) are \red-
shifted away" and tend to zero. The only assumption we
have to make at this point is that the energy density of
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FIG. 2: Generic form of the potential V in a cyclic non-
singular universe.

dark energy does not increase at late times8. Then, if
� in Eq. (47) is large enough, there necessarily exists
a value of the scale factor amax where the total energy
density �tot becomes zero, �tot = 0 (region I in Fig. 3.)
It follows from Eq. (18) that at amax, _a = 0. In addition,
at amax the right hand side of of Eq. (19),

�a = �3amax
2

�m(wm �w ); (48)

is negative, since if �tot reaches zero from a positive value,
the combination wm � w has to be positive. Thus, at
amax, _a = 0 and �a < 0, so the universe automatically
starts contracting.

After the universe starts contracting, �  / a�3 re-
verses its motion and starts growing. At the same time,
the energy densities in matter increase as the universe
contracts. At suÆciently small a we can assume that
the matter component of the universe mainly consists of
radiation. Assume that for large values of �  , V de-
creases faster than the rate at which the energy density
of radiation increases, w > 1=3 (recall that the universe
contracts). If V is well approximated by a power at large
values of �  , this implies, from Eq. (31), that jV j grows
faster than ( �  )4=3, which is satis�ed by the interaction
(47). Then, the ratio of spinor to radiation energy densi-
ties steadily approaches �1 (region III in Fig. 3.) Again,
there exists then a scale factor amin where �tot = 0. At
amin, _a = 0 and from Eq. (19) �a > 0 since, when �tot = 0

8 By a suitable modi�cation of the interaction in Fig. 2, the spinor
�eld could also account for dark energy. In that case one can
drop the latter assumption and, up to the constraints on the
parameters of our toy model, the rest of our discussion remains
unaltered.

and w > 1=3 are satis�ed, Eq. (19) reads

�a � amin
�m
2
(3w � 1) > 0: (49)

Hence, at amin the universe bounces and starts expand-
ing until it again reaches region II. From that point on
cosmic history as described above repeats itself. Note
that cosmic evolution is singularity-free throughout. Af-
ter the bounce from contraction to expansion, the total
equation of state of the universe evolves from wtot = �1
towards wtot = 1=3 during radiation domination. Hence,
there is a stage of ination between the bounce and radi-
ation domination, and eventually a spectrum of nearly-
scale invariant perturbations in the matter �elds could
be seeded.
It is possible to estimate the values of the parame-

ters � , m and � by imposing certain observational con-
straints on our model. Let us set today's value of the
scale factor to 1 and denote the present value of the spinor
bilinear by ( �  )0. Requiring the energy density of the
spinor to be subdominant today we �nd

j� +m( �  )0j � �crit � 10�121; (50)

where we have assumed that the term proportional to
� is negligible today. The previous relation shows that
our model requires a certain degree of �ne tuning, but
let us point us that the required �ne tuning is of the
same order as the one needed to explain late time cos-
mic acceleration. If condition (50) is satis�ed, the spinor
�eld remains subdominant all the way into the past, un-
til the moment when its (negative) energy density ex-
actly compensates the (positive) matter energy density
and the universe bounces (Fig. 3). Primordial nucle-
osynthesis is the earliest epoch when conditions in the
universe can be probed. In order for the bounce to occur
before nucleosynthesis, and in order not to conict with
its standard predictions, the energy density of the spinor
should be subdominant at that time as well. Since pri-
mordial nucleosynthesis occurs at a � 10�10, and today
(�r)0 � 10�4�crit, it follows that

�( �  )20 � 10�145: (51)

Finally, in order for our �eld-theoretic classical descrip-
tion to remain valid throughout cosmic history, we im-
pose that the energy density of radiation at the bounce
be signi�cantly below the Planckian energy density,

�( �  )20 � 10�188: (52)

Due to the freedom in the dynamical variable ( �  )0,
there is a large set of parameters that satisfy the con-
straints (50), (51) and (52). It is easy to verify that a set
of parameters that satis�es all the constraints is

� � �10�2 � (10�3eV)4; m � 10�3eV; � � 10�5GeV�2;
(53)

where we have assumed ( �  )0 = 10�95, which implies
that at the bounce ( �  )min � 10�43. Hence, throughout
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ρψ>0

II

ρψ <0

I

ρψ <0

III

mρ

ρψ

amin amax

log |ρ|

log a

FIG. 3: Schematic plot of the energy densities of matter (�m) and spinor (� ) as a function of the scale factor a. In Region
I the energy density of the spinor is negative. If the universe expands, it starts contracting at amax, when spinor and matter
energy densities add to zero. In Region II the spinor remains subdominant. Once its energy density becomes negative again
in Region III, its importance starts growing until the moment when the total energy density is zero again and the universe
bounces back.

cosmic history �  remains much smaller than 1. Notice
that the cosmological term in (53) is of the same order
as the component that is presently driving cosmic accel-
eration, the mass m agrees with common neutrino mass
models, and the coupling constant � is of the order of
Fermi's constant. From this point of view, the parame-
ter choices (53) do not appear to be unphysical.
Certainly, some aspects of our cyclic scenario still re-

main to be discussed. We have not addressed the issue of
how to obliterate the inhomogeneous debris of previous
cycles, and we have not taken into account particle pro-
duction at the bounce. Eventually, both issues might be
related. Finally, let us point out that even in the absence
of matter, the spinor can support a cyclic universe, where
amin and amax are simply determined by the values of �  
where V becomes zero.

VI. SUMMARY AND CONCLUSIONS

In a at FRW universe there are consistent solutions
of Einstein's equations coupled to a homogeneous spinor
�eld. For such solutions, the scalar bilinear �  is propor-
tional to a�3, as for the number density of a gas of non-
relativistic particles. The energy density of the spinor is
given by an (a priori) arbitrary self-interaction term V .
For a given form of the spinor energy density � (a), one
can always �nd a self-interaction V ( �  ) that has � (a)
as a solution of the equations of motion. Thus, canonical,
classical, homogeneous spinors can violate any desired en-
ergy condition, and their behavior in general cannot be
reproduced by a minimally coupled, homogeneous scalar
�eld.

A spinor �eld can also support a suÆciently long stage
of ination, provided the self-interaction term V satis�es
a single condition on its slope for an exponentially large
range of �  . This condition is satis�ed, for instance,
if V asymptotes to a constant value at large values of
�  . The spectrum of primordial spinor density pertur-
bations seeded during such a stage has a spectral index
n � 4, and is hence strongly scale dependent. In addi-
tion, the power spectrum can be anisotropic, even though
it is seeded within an FRW-universe. The existence of a
\curvaton" �eld [15] during spinor-driven ination might
resolve these problems, ultimately resulting in the gener-
ation of an adiabatic, nearly scale-invariant spectrum of
density perturbations.

Finally, for simple choices of the self-interaction V ,
there exist smooth cyclic cosmologies where the spinor
energy density oscillates back and forth. The param-
eters needed to accommodate a realistic cosmology do
not appear to be unphysical. Although the simplicity of
the models gets somewhat distorted, by a straightforward
modi�cation of the self-interaction V , the spinor can also
account for dark energy and still allow for realistic cyclic
non-singular solutions.

Our approach has been to treat the spinor �eld as a
complex valued, classical object obeying a simple rela-
tivistic equation of motion, a non-linear generalization of
the Dirac equation in an expanding universe. In the Ap-
pendix we have addressed the validity and relevance of
this assumption. Additionally, the validity of our results
certainly depends on the stability of our homogeneous
solutions against the growth of inhomogeneous uctua-
tions. We have left this question for future work.

To conclude, we have shown that spinors can accom-
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modate a large set of interesting cosmological solutions.
Although bilinears generically decay during expansion,
they could still be presently important if initially they
were suÆciently displaced out of equilibrium (as for any
interesting cosmological solution). Due to its nature,
when dealing with a spinor �eld the question to ask is not
whether certain behavior is possible, but rather, whether
the corresponding self-interaction is natural.
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APPENDIX A: CLASSICAL SPINORS

A Dirac spinor is a four-component object  that
transforms according to (1) and obeys Dirac's equation.
As far as one is only concerned with solutions of equations
of motion, the components of a spinor can be consistently
regarded as being complex numbers, as we have done in
this paper. However, our world is ultimately described by
quantum-mechanical laws, and the question is: To what
extent is a classical treatment a good approximation to
the quantum-mechanical problem?
In the canonical approach to quantum �eld theory [34],

spinors are operator-valued �elds that act on an appro-
priately de�ned Hilbert space. The spinor operator  ̂
also satis�es the Dirac equation,

i�@� ̂ �m ̂ = 0; (A1)

where for the purposes of illustration and simplicity we
consider a massive fermion in at spacetime. We work in
the Heisenberg representation, where operators are time-
dependent and states are time-independent. We would
like to interpret a classical spinor as the expectation value
of the spinor in an appropriate state jsi,

 cl � hsj ̂jsi � h ̂i: (A2)

Taking the expectation value of equation (A1), we �nd
that  cl satis�es the equation

i�@� cl �m cl = 0; (A3)

which simply states that the classical spinor  cl obeys
the conventional Dirac equation. Therefore, we already
recover one of the main ingredients we have used in this
paper.

Note that the expectation value of a spinor in a

physical state is a complex number, not a Grassmann
number. There exist in fact states jci such that

hcj ̂a(x)jci =  a(x), with the  a(x)'s four Grassmann
valued �elds (a = 1; ::; 4 is the spin index). However,
that such states are not part of the physical Fock space
is easily seen by considering the energy density in such a
state:

�c = mhcj �̂  ̂jci = m �  : (A4)

The energy density in a physical state must be a real
number. However, because  a b = � b a, �nc = 0 for
any n > 4. This is impossible for a non-zero real number.
Although the expectation value of the spinor obeys the

classical Dirac equation (A1), large quantum uctuations
of  around its expectation value might invalidate the
classical approximation. In our particular case, the only
observable that enters the classical Einstein equations is
the energy density, which in our classical treatment is

�cl = m � cl cl (A5)

We want to �nd out whether the expectation value of
the energy density h�i = mh �  i is well approximated by
(A5). At this stage, one has to face a well-known prob-
lem. The vacuum expectation value of �  is

P
k(�1) =�1. The conventional way of dealing with this diver-

gence is to replace expectation values by their \renor-
malized" counterparts,

h: : :iren � hsj : : : jsi � h0j : : : j0i: (A6)

With this prescription, the expectation value of �  is
zero for the vacuum, and n for a state containing n par-
ticles plus antiparticles per unit volume.
Then, in order for our classical approximation to be

valid, the following relation should hold,���� h
�  iren � h � irenh iren

h � irenh iren

����� 1: (A7)

In the bosonic case, the states that satisfy inequalities
analogous to (A7) have large occupation numbers. As
the largest occupation number of fermion modes is one,
it is commonly believed that fermionic physical states
cannot satisfy relations such as (A7). This turns out not
to be the case.
Let A and B be two complex numbers and let jsi be

the state

jsi = Aj0i+Bj1i: (A8)

Here, j0i is the vacuum and j1i = ay0j0i is a zero-
momentum one-particle state. The state is normalized
if

jAj2 + jBj2 = 1: (A9)

The spinor operator can be expanded in creation and
annihilation operators,

 =
X
k

�
akuk + bykvk

�
; (A10)
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where uk and vk are normalized complex-valued spinors,
�ukuk = ��vkvk = 1 and �vkuk = �ukvk = 0. The reader
can easily verify that for the state (A8)

h iren = A�Bu0; h � iren = B�A�u0; h �  iren = jBj2:
(A11)

Therefore, condition (A7) implies

jBj2 = 1� jAj2 � 1: (A12)

Obviously, the last condition can be easily met. It means
that a spinor can be treated classically if its quantum
state is \close" to the vacuum. In fact, this is what one
is doing by setting the fermions to zero in a classical
treatment of any theory that contains spinors. But even
if there are departures from the vacuum, we have shown
that treating a massive Dirac spinor classically is in some
cases a good approximation.
Finally, let us comment on the fermion condensates

that are often encountered in particle and condensed
matter physics. In quantum theories with self-interacting
fermions, it might happen that the spinor bilinear �  

develops a non-zero vacuum expectation value. This is
what occurs for instance in the BCS theory of supercon-
ductivity [35], where phonon-induced interactions cause
electrons to form bound Cooper pairs. In the relativis-
tic Nambu-Jona-Lasinio model [36] or its renormalizable
counterpart, the Gross-Neveu model [37], self-interacting
chiral fermions form a scalar condensate, spontaneously
breaking chiral-symmetry and dynamically generating a
fermion mass. Within the e�ective action formalism, the
dynamics of the condensate is completely determined by
a classical scalar �eld theory. The exact classical the-
ory that reproduces the full variety of phenomena is ex-
tremely complicated. However, for certain states of the
quantum system the e�ective action is well approximated
by a simple, local, relativistic scalar �eld theory9. Just as
a strongly coupled fermionic system can be e�ectively de-
scribed by a classical scalar �eld theory, it is conceivable
that certain strongly coupled systems might be described
by a simple classical spinor �eld theory, as we consider
in this paper.

9 Note, however, that one generically expects fermion condensates
to couple non-minimally to gravity [38].
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